\(\int \frac {\cos ^3(c+d x) \cot ^3(c+d x)}{a+a \sin (c+d x)} \, dx\) [630]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 106 \[ \int \frac {\cos ^3(c+d x) \cot ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {3 x}{2 a}+\frac {3 \text {arctanh}(\cos (c+d x))}{2 a d}-\frac {3 \cos (c+d x)}{2 a d}+\frac {3 \cot (c+d x)}{2 a d}-\frac {\cos ^2(c+d x) \cot (c+d x)}{2 a d}-\frac {\cos (c+d x) \cot ^2(c+d x)}{2 a d} \]

[Out]

3/2*x/a+3/2*arctanh(cos(d*x+c))/a/d-3/2*cos(d*x+c)/a/d+3/2*cot(d*x+c)/a/d-1/2*cos(d*x+c)^2*cot(d*x+c)/a/d-1/2*
cos(d*x+c)*cot(d*x+c)^2/a/d

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.241, Rules used = {2918, 2672, 294, 327, 212, 2671, 209} \[ \int \frac {\cos ^3(c+d x) \cot ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {3 \text {arctanh}(\cos (c+d x))}{2 a d}-\frac {3 \cos (c+d x)}{2 a d}+\frac {3 \cot (c+d x)}{2 a d}-\frac {\cos ^2(c+d x) \cot (c+d x)}{2 a d}-\frac {\cos (c+d x) \cot ^2(c+d x)}{2 a d}+\frac {3 x}{2 a} \]

[In]

Int[(Cos[c + d*x]^3*Cot[c + d*x]^3)/(a + a*Sin[c + d*x]),x]

[Out]

(3*x)/(2*a) + (3*ArcTanh[Cos[c + d*x]])/(2*a*d) - (3*Cos[c + d*x])/(2*a*d) + (3*Cot[c + d*x])/(2*a*d) - (Cos[c
 + d*x]^2*Cot[c + d*x])/(2*a*d) - (Cos[c + d*x]*Cot[c + d*x]^2)/(2*a*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2671

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Dist[b*(ff/f), Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*(Tan[e + f*x]/ff
)], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]

Rule 2672

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*(Sin[e + f*x]/ff)
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 2918

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Dist[g^2/a, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Dist[g^2/(b*d),
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2
 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\int \cos ^2(c+d x) \cot ^2(c+d x) \, dx}{a}+\frac {\int \cos (c+d x) \cot ^3(c+d x) \, dx}{a} \\ & = -\frac {\text {Subst}\left (\int \frac {x^4}{\left (1-x^2\right )^2} \, dx,x,\cos (c+d x)\right )}{a d}+\frac {\text {Subst}\left (\int \frac {x^4}{\left (1+x^2\right )^2} \, dx,x,\cot (c+d x)\right )}{a d} \\ & = -\frac {\cos ^2(c+d x) \cot (c+d x)}{2 a d}-\frac {\cos (c+d x) \cot ^2(c+d x)}{2 a d}+\frac {3 \text {Subst}\left (\int \frac {x^2}{1-x^2} \, dx,x,\cos (c+d x)\right )}{2 a d}+\frac {3 \text {Subst}\left (\int \frac {x^2}{1+x^2} \, dx,x,\cot (c+d x)\right )}{2 a d} \\ & = -\frac {3 \cos (c+d x)}{2 a d}+\frac {3 \cot (c+d x)}{2 a d}-\frac {\cos ^2(c+d x) \cot (c+d x)}{2 a d}-\frac {\cos (c+d x) \cot ^2(c+d x)}{2 a d}+\frac {3 \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{2 a d}-\frac {3 \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,\cot (c+d x)\right )}{2 a d} \\ & = \frac {3 x}{2 a}+\frac {3 \text {arctanh}(\cos (c+d x))}{2 a d}-\frac {3 \cos (c+d x)}{2 a d}+\frac {3 \cot (c+d x)}{2 a d}-\frac {\cos ^2(c+d x) \cot (c+d x)}{2 a d}-\frac {\cos (c+d x) \cot ^2(c+d x)}{2 a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.98 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.43 \[ \int \frac {\cos ^3(c+d x) \cot ^3(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\left (\csc \left (\frac {1}{2} (c+d x)\right )+\sec \left (\frac {1}{2} (c+d x)\right )\right )^2 \left (-12 c-12 d x+12 \cos (c+d x)-4 \cos (3 (c+d x))-12 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+12 \cos (2 (c+d x)) \left (c+d x+\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+12 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )-10 \sin (2 (c+d x))+\sin (4 (c+d x))\right )}{64 a d (1+\sin (c+d x))} \]

[In]

Integrate[(Cos[c + d*x]^3*Cot[c + d*x]^3)/(a + a*Sin[c + d*x]),x]

[Out]

-1/64*((Csc[(c + d*x)/2] + Sec[(c + d*x)/2])^2*(-12*c - 12*d*x + 12*Cos[c + d*x] - 4*Cos[3*(c + d*x)] - 12*Log
[Cos[(c + d*x)/2]] + 12*Cos[2*(c + d*x)]*(c + d*x + Log[Cos[(c + d*x)/2]] - Log[Sin[(c + d*x)/2]]) + 12*Log[Si
n[(c + d*x)/2]] - 10*Sin[2*(c + d*x)] + Sin[4*(c + d*x)]))/(a*d*(1 + Sin[c + d*x]))

Maple [A] (verified)

Time = 0.32 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.32

method result size
derivativedivides \(\frac {\frac {\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {-4 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-8}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+12 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d a}\) \(140\)
default \(\frac {\frac {\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {2}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}-6 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {-4 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )-8}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+12 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d a}\) \(140\)
parallelrisch \(\frac {-48 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+4 \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-4\right ) \left (\csc ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\cos \left (\frac {7 d x}{2}+\frac {7 c}{2}\right )-\cos \left (\frac {5 d x}{2}+\frac {5 c}{2}\right )+9 \cos \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )+9 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )+8 \left (-3+4 \cos \left (d x +c \right )\right ) \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+48 d x}{32 d a}\) \(141\)
risch \(\frac {3 x}{2 a}-\frac {i {\mathrm e}^{2 i \left (d x +c \right )}}{8 d a}-\frac {{\mathrm e}^{i \left (d x +c \right )}}{2 a d}-\frac {{\mathrm e}^{-i \left (d x +c \right )}}{2 a d}+\frac {i {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d a}+\frac {{\mathrm e}^{3 i \left (d x +c \right )}+{\mathrm e}^{i \left (d x +c \right )}+2 i {\mathrm e}^{2 i \left (d x +c \right )}-2 i}{a d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{2}}+\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{2 d a}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{2 d a}\) \(171\)
norman \(\frac {-\frac {1}{8 a d}+\frac {3 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}-\frac {3 \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d a}+\frac {\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d a}+\frac {3 x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {3 x \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {9 x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {9 x \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {9 x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {9 x \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {3 x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}+\frac {3 x \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a}-\frac {3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d a}-\frac {5 \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d a}+\frac {\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d a}-\frac {21 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d a}-\frac {9 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d a}-\frac {25 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d a}-\frac {5 \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {3 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 a d}\) \(393\)

[In]

int(cos(d*x+c)^6*csc(d*x+c)^3/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/4/d/a*(1/2*tan(1/2*d*x+1/2*c)^2-2*tan(1/2*d*x+1/2*c)-1/2/tan(1/2*d*x+1/2*c)^2+2/tan(1/2*d*x+1/2*c)-6*ln(tan(
1/2*d*x+1/2*c))+16*(-1/4*tan(1/2*d*x+1/2*c)^3-1/2*tan(1/2*d*x+1/2*c)^2+1/4*tan(1/2*d*x+1/2*c)-1/2)/(1+tan(1/2*
d*x+1/2*c)^2)^2+12*arctan(tan(1/2*d*x+1/2*c)))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.19 \[ \int \frac {\cos ^3(c+d x) \cot ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {6 \, d x \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right )^{3} - 6 \, d x + 3 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 3 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 2 \, {\left (\cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 6 \, \cos \left (d x + c\right )}{4 \, {\left (a d \cos \left (d x + c\right )^{2} - a d\right )}} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/4*(6*d*x*cos(d*x + c)^2 - 4*cos(d*x + c)^3 - 6*d*x + 3*(cos(d*x + c)^2 - 1)*log(1/2*cos(d*x + c) + 1/2) - 3*
(cos(d*x + c)^2 - 1)*log(-1/2*cos(d*x + c) + 1/2) + 2*(cos(d*x + c)^3 - 3*cos(d*x + c))*sin(d*x + c) + 6*cos(d
*x + c))/(a*d*cos(d*x + c)^2 - a*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^3(c+d x) \cot ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**3/(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 261 vs. \(2 (94) = 188\).

Time = 0.30 (sec) , antiderivative size = 261, normalized size of antiderivative = 2.46 \[ \int \frac {\cos ^3(c+d x) \cot ^3(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\frac {\frac {4 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}}{a} - \frac {\frac {4 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {18 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {16 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {17 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {4 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - 1}{\frac {a \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {2 \, a \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac {a \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}}} - \frac {24 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a} + \frac {12 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a}}{8 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/8*((4*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^2/(cos(d*x + c) + 1)^2)/a - (4*sin(d*x + c)/(cos(d*x +
 c) + 1) - 18*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 16*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 17*sin(d*x + c)^4
/(cos(d*x + c) + 1)^4 - 4*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 1)/(a*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 2*
a*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + a*sin(d*x + c)^6/(cos(d*x + c) + 1)^6) - 24*arctan(sin(d*x + c)/(cos(d
*x + c) + 1))/a + 12*log(sin(d*x + c)/(cos(d*x + c) + 1))/a)/d

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.58 \[ \int \frac {\cos ^3(c+d x) \cot ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {12 \, {\left (d x + c\right )}}{a} - \frac {12 \, \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right )}{a} + \frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 4 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{2}} + \frac {6 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 4 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 5 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 16 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 4 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}^{2} a}}{8 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^3/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/8*(12*(d*x + c)/a - 12*log(abs(tan(1/2*d*x + 1/2*c)))/a + (a*tan(1/2*d*x + 1/2*c)^2 - 4*a*tan(1/2*d*x + 1/2*
c))/a^2 + (6*tan(1/2*d*x + 1/2*c)^6 - 4*tan(1/2*d*x + 1/2*c)^5 - 5*tan(1/2*d*x + 1/2*c)^4 + 16*tan(1/2*d*x + 1
/2*c)^3 - 12*tan(1/2*d*x + 1/2*c)^2 + 4*tan(1/2*d*x + 1/2*c) - 1)/((tan(1/2*d*x + 1/2*c)^3 + tan(1/2*d*x + 1/2
*c))^2*a))/d

Mupad [B] (verification not implemented)

Time = 9.48 (sec) , antiderivative size = 223, normalized size of antiderivative = 2.10 \[ \int \frac {\cos ^3(c+d x) \cot ^3(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a\,d}-\frac {3\,\mathrm {atan}\left (\frac {9}{9\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+9}-\frac {9\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{9\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+9}\right )}{a\,d}-\frac {3\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{2\,a\,d}-\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\frac {17\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{2}-8\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+9\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {1}{2}}{d\,\left (4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+8\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+4\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,a\,d} \]

[In]

int(cos(c + d*x)^6/(sin(c + d*x)^3*(a + a*sin(c + d*x))),x)

[Out]

tan(c/2 + (d*x)/2)^2/(8*a*d) - (3*atan(9/(9*tan(c/2 + (d*x)/2) + 9) - (9*tan(c/2 + (d*x)/2))/(9*tan(c/2 + (d*x
)/2) + 9)))/(a*d) - (3*log(tan(c/2 + (d*x)/2)))/(2*a*d) - (9*tan(c/2 + (d*x)/2)^2 - 2*tan(c/2 + (d*x)/2) - 8*t
an(c/2 + (d*x)/2)^3 + (17*tan(c/2 + (d*x)/2)^4)/2 + 2*tan(c/2 + (d*x)/2)^5 + 1/2)/(d*(4*a*tan(c/2 + (d*x)/2)^2
 + 8*a*tan(c/2 + (d*x)/2)^4 + 4*a*tan(c/2 + (d*x)/2)^6)) - tan(c/2 + (d*x)/2)/(2*a*d)